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Abstract 

The paper deals with possibilities of texture analysis of metal alloys using X-ray diffraction. The basic 

principles of the methodology, experimental equipments and procedures are shown. There are described a 

measuring methods of pole patterns and orientation distribution function of texture and interpretation of the 

results for practical use. Finally, we will show some of the results of measurements on -brass CuZn30.  
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1 Introduction 

 Polycrystalline materials have been frequent object of research and today it is no different. Unlike the past, 

metallographic methods have been developed further thanks to the possibilities that entail development of 

computer technology. These include a texture analysis of polycrystalline materials. 

Techniques using X-ray diffraction is very old [1] and in texture analysis has an irreplaceable role. In a 

sense, it is complementary to the methods, consisting of the diffraction of photons. While electron microscopy 

allows study of the structural details at the nanometric scale, X-ray diffraction provides a parameter, which is 

averaged over a relatively large sample volume. Electron microscopy has excellent resolution in real space, on 

the other hand x-ray diffraction in angular space. 

In recent decades thin films have become an inevitable and important part of the materials research and 

modern technologies. Each property of a thin film is more or less depends on their structure. A prerequisite of 

any technological progress in this area is therefore detailed information on the structural parameters of thin films 

2,3. 

Knowledge of the structure and texture of polycrystalline materials is necessary because both are the result 

of the technological process and at the same time determine the characteristics of the material. The very notion of 

texture characterizes and describes the preferential orientation of the crystallites of the polycrystalline material. 

Anisotropy of the resulting material is then given by anisotropy grains themselves and also their orientation [4. 

Like other counting technique, the analysis of texture undergone certain methodological developments. 

First, the texture geologists pay for the study of geological processes and transformations of rocks and minerals 

Earth's surface. With the advent of industrial production and development of new materials, there is still paid 

careful attention to texture [5]. First, describing the texture by measured pole figures, later, with the advent of 

computer technology, the texture is described by the orientation distribution function (ODF) 6. 

 

2 X-Ray diffraction and texture analysis 

 

2.1 X-ray diffraction 

X-ray radiation used in texture analysis is the electromagnetic radiation of wavelength λ from 0.01nm to 5 

nm. X-ray spectrum emitted by the copper anode of the X-ray tube consists of two components, the continuous 

and characteristic spectrum. The continuous part of the spectrum is known as the white radiation. It arises by 

braking incident electrons in an electric field of nuclei or by ionization of atoms. 

The characteristic electron radiation originates from one stamping of internal energy levels of atoms and the 

subsequent transfer of electrons from higher levels on the loose surface. The wavelength of the emitted radiation 

energy determines the difference appropriate levels of atoms. Characteristic spectra are classified according to 

levels, from which the electron has been discarded, as the series K, L, M, ... (Fig. 1, Fig. 2). 

The wavelengths of the three strongest lines of the characteristic spectrum of a copper anode of the X-ray 

tube, which is used most often, are shown in the Table 1. 
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Table 1 The wavelength of lines in the characteristic spectrum for copper anode of the X-ray tube7 

Line    K1 K2 K 

nm 0,154056 0,154439 1,39217 

 

 

 

    

Fig. 1 Energy levels of the atom and transitions of electrons 7 Fig. 2 Cu anode X-ray spectrum 

Upon impact of the X-ray on crystalline substance, there is scattering of radiation on scattering centers, (the 

individual atoms making up the crystals). Since atoms are periodically three-dimensionally arranged in crystals, 

under certain conditions, may the interference of coherent scattered waves arise and intense diffracted bundle 

may be registered in some directions in space. 

Geometrical conditions of diffraction in the case of three-dimensional periodic structures down Laue 

diffraction conditions. Conditions of diffraction can also be determined by Bragg's law (1), which is based on the 

concept of the planes of the crystal lattice (Fig. 3). A set of mutually parallel lattice planes are described by 

triplet of Miller indices (hkl) and characterized by distance dhkl. 
 

 2dhkl sin   =n. ,                                                                                                                      (1) 
 

where n is an integer (1,2,…). Bragg's law expresses known condition for the creation of interference in the 

optics - track difference of the two beams is an integer multiple of the wavelength λ. If reflected X-rays beams 

are in phase, they occur reinforcement of the beam or constructive interference. 

 

 
Fig. 3 Bragg's law 

 

The angle of incidence θ measured by diffracting hkl planes (the condition of interference) is called the 

Bragg's angle. The distance dhkl between two lattice planes is given by (2). In this equation a is a lattice constant. 

 
222 lkh

a
dhkl


                                                                                                               (2) 

 

2.2 Analysis of polycrystalline layers 

Polycrystalline material consists of a vast number of grains - crystallites that are randomly oriented in space. 

Upon impact the X-ray on the sample, the Bragg's condition of diffraction is fulfilled for a sufficient number of 

crystallites even when the sample is stationary. In various crystallites diffraction occurs on different systems of 

crystal planes that are characterized by interplanar distance dhkl. Although the whole spectrum of X-ray lamp 

incident on the sample (the simplest experimental setup), detectable diffraction originate only for the most 

intense lines of characteristic spectrum, i.e. doublet Kα1,2 and Kβ. 
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Since the diffraction from Kβ line does not bring any new information about the sample, on the contrary make 

diffraction report less transparent, Kβ line of the X-ray spectrum is removed by β-filter now at X-ray radiation 

output of the lamp. 

By Bragg's law, between diffracted beams from different planes (hkl) and incident beam there are different 

angles 2θhkl (Fig. 4). The basic technique of registration of radiation diffracted on the sample is so called θ/2θ 

measurement. Equipment operating in this mode is called θ/2θ diffractometer. Outcome measurements are 

presented as a graph of intensity depending on the angle 2θ. 

 

 
Fig. 4 Principle of θ/2θ measurement [7] 

 

In the case X-ray diffraction on polycrystalline materials, only grains with diffraction planes parallel to the 

surface of the sample contribute to the diffracted beam registered by detector (Fig. 5). Different groups of grains 

contribute to different diffraction with different Bragg's angles. 
 

 
 

Fig. 5 X-ray diffraction on group of grains of polycrystalline materials[7] Fig. 6 Crystal and sample coordinate system 

 

2.3 Texture and anisotropy of crystalline materials 

A crystal is characterized by the periodic arrangement of its elements (atoms, ions) in space. This always 

generates a dependence of the crystal properties on the chosen direction, which is called anisotropy. 

Most natural or artificial solids (rocks, ceramics, metal alloys or polymers) contain of many crystallites of 

different size, shape and different orientations. They are usually multi-phase substances, i.e. they contain several 

crystalline phases of different structure. The most important parameter describing the anisotropy of 

polycrystalline materials is their texture. Via the anisotropy of physical properties due to the lattice structure, a 

regular texture in which the crystallites of one phase have only a few preferred orientations produces anisotropy 

of the polycrystalline material as well.  

The great variety of texture-modifying processes described an even greater number of material-specific 

textures, since the different phases present in a material react differently due to their structure and properties; this 

is also documented by different textures. Therefore, the knowledge of the initial and final textures of a sample is 

the most important precondition for the investigation and description of texture-modifying processes and their 

conditions. Only this knowledge allows the systematic manipulation of anisotropic properties in polycrystalline 

materials (manufacture of design materials). 

 

2.4 Crystal and sample coordinate systems 

To describe the orientations of a crystallite, Cartesian right-hand coordinate systems must be fixed for both 

the sample and the crystallite. Uniform conventions must be agreed for the application of the coordinate systems 

to allow the comparability of various textures. 

The sample coordinate system KA is usually adapted to the process geometry if it is known. Thus, the rolling 

direction R is selected parallel to XA and the normal direction N is selected parallel to ZA for a rolled sample 

(Fig. 6). The crystal coordinate system KB should be fixed to the basis vectors a, b and c of the Bravais lattice as 

follows: 

ZB  c, YB  c  a, XB  YB  ZB.                     (3) 
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Crystal and sample symmetry are the reason that there are several equivalent possibilities for fixing the 

crystal and sample coordinate system. Evidently the crystal symmetry does not lead to a multiplication of the 

crystallite orientation since the crystal lattice is projected on itself by the symmetry operations. In contrast, the 

sample symmetry produces the existence of several crystallites with evidently different orientations which are, 

however, equivalent in terms of the sample symmetry. 

 

2.5 Texture measurement 

Texture measurement is based on the registration of intensity of the selected diffraction for different rotation 

of the sample at a detector's fixed position. The intensity of the radiation is proportional to the number of 

crystallites, which are for a given orientation of the sample in a diffraction position. 

 Crystallite orientation in polycrystalline thin films is rarely isotropic. Mostly preferential orientation of some 

crystallographic direction is observed - usually with a low direction index. This direction relates to the 

orientation of underlay and they used to be perpendicular to themselves (Fig. 7). A thin layer has a preferential 

orientation - texture. 

  

 
Fig. 7 Schematic structure layout [7] 

 

A special sample holder is required to achieve full texture analysis by X-ray diffraction, called texture 

goniometer. It enables a rotation about an axis perpendicular to the plane of the sample - φ axis and turning aside 

of the sample about a horizontal - axis χ (Fig. 8). 

 

Fig. 8 Two ways to texture measurement [7] 

 

From the beginning, the texture of polycrystalline materials, especially metal, was determined by X-ray 

diffraction on specially designed texture goniometer. Textural goniometers are becoming increasingly 

sophisticated, their operation is computer controlled and programmed to evaluate the texture and the resulting 

anisotropic properties of materials is a series of program files that are processed measured data. Still it is 

necessary to know the basic principles and theoretical knowledge in evaluating textures. It is necessary to 

understand the concepts such as symmetry, coordinate system, the orientation, ideal orientation of crystallites, 

Euler angles 3, stereographic projection, projection standard single crystal structure of pole figures, ODF. 

Calculated values of the coefficients of normal anisotropy are interesting for the practice. 

Conventional θ/2θ diffractometers allow partial texture analysis using the so-called ω-curves (Fig. 9) in a 

fixed position of the detector and rotation the sample only around the basic - ω axis of diffractometer . The range 

of these measurements is limited by the size of the Bragg's diffraction angle. Therefore the texture analysis can 

not be complete. However, the ω-curves can be measured for different rotation around sample's normal. In the 

absence of φ axis this rotation can be done manually. 

A thin film is formed by crystallites of rectangular shape. The crystallites are oriented so that their long axis 

is rotated in a direction approximately perpendicular to the underlay. A ω-curve of diffraction planes (hkl) 

reaches a maximum when the angle ω is equal to the Bragg's angle θ. 
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To describe a measurement of the width of an object in a picture, when that object does not have sharp edges, 

the method of full width of the image at half maximum value is used. Full-width half-maximum (FWHM) is a 

simple and well-defined number (Fig.10) which can be used to compare the quality of physical effects under 

different observing conditions. FWHM of the curves tells about a certain texture in the sample. FWHM 

corresponds to a degree of directional arrangement.               

 

 
 

       Fig. 9 Model of the  - curve [7] 
Fig. 10  An explanation of FWHM (full width at half 

maximum)  

 

Accompanying phenomenon of every technological process (mechanical, thermal or chemical) is the 

formation of mechanical stresses in materials. These usually remain in the material after the completion of the 

process, so they are often referred as residual stresses. Tensions are generally non-homogeneous, and may vary 

significantly in various sizes ranging from a diameter comparable to the interatomic distances to several tens of 

nm dimensions. The macroscopic stress is tension approximately homogeneous in a macroscopic area of the 

material. The polycrystalline material is represented by a systematic shift of diffraction maxima, which allows 

their measurement using X-ray diffraction. Due to the strong absorption of X-ray diffraction it allows to analyze 

the mechanical stress only near-surface layer of material with a thickness of several microns. 

 

2.6 Pole figures 

Texture is often represented using a pole figure, in which a specified crystallographic axis (or pole) from 

each of a representative number of crystallites is plotted in a stereographic projection, along with directions 

relevant to the material's processing history. These directions define the so-called sample reference frame 

because the investigation of textures started from the cold working of metals. These directions are usually 

referred as the rolling direction, the transverse direction and the normal direction. For drawn metal wires the 

cylindrical fiber axis turned out as the sample direction around which preferred orientation is typically observed. 

View of texture is very specific task. The results of full texture measurements are presented in the form of so-

called pole figures (Fig.11). Pole figures provide the first picture of the texture sample, without quantitative 

evaluation. The distribution function of orientation of crystallites is defined on the reference sphere area - pole 

figure is a special part of projection of this area to the plane (Fig.12). The center of pole figure corresponds to the 

normal of the sample surface. 

 

  

Fig. 11 An example of pole figure  Fig. 12  Sphere of fixed-length scattering vector 

and stereographic projection 3 

2.7   Orientation distribution function (ODF) 

The full 3D representation of crystallographic texture is given by the orientation distribution function (ODF) 

which can be achieved through evaluation of a set of pole figures or diffraction spectra. Subsequently, all pole 

figures can be derived from the ODF 3. 
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The ODF is defined as the volume fraction V of grains with a certain orientation g: 
 

 
 
dg

gdV

V
gODF

1
                       (4) 

 

The space g is identified using three Euler angles (, ). The Euler angles (see Fig. 12) then describe the 

transition from the sample’s reference frame into the crystallographic reference frame of each individual grain of 

the polycrystalline. One thus ends up with a large set of different Euler angles, the distribution of which is 

described by the ODF. ODF is normally displayed as a set of rusts of Euler space for one of its constant angle to 

comprehensively characterize the texture of the sample. A relatively large number of inter-related cuts, however, 

can " fog " some important facts. 

The orientation distribution function, ODF, cannot be measured directly by any technique. Traditionally 

both X-ray diffraction and EBSD may collect pole figures. Different methodologies exist to obtain the ODF from 

the pole figures or data in general. They can be classified based on how they represent the ODF. Some represent 

the ODF as a function, sum of functions or expand it in a series of harmonic functions. Others, known as discrete 

methods, divide the ODF space in cells and focus on determining the value of the ODF in each cell 3. 

 

3 Experimental results  

In our experiment, we examined samples of -brass CuZn30 with chemical composition according to 

DIN17660.W, No. 2.0256. The microscopic surface structure is shown in Fig.13. Four samples with different 

rolling  rate   (Table 2)  were used.  The measurements were made in Institute of Electrical Engineering of 

Slovak Academy of Sciences in Bratislava on Bruker diffractometer with Cu rotation anode. 
 

Table 2 Samples of deep drawn brass CuZn30 (Cu – 70%, Zn – 30%) 

Sample indication Rolling rate  

S0 annealed without deformation 

S3 cold rolled  –      = 22,0% 

S4 cold rolled  –      = 35,0% 

S6 cold rolled  –      = 53,3% 
 

In first step, the basic diffraction response was measured. Result is shown in Fig.14. There is possible to see the 

lines from copper face-centered cubic (FCC) structure plane (111) and (200). 

 

Fig. 13  The texture of CuZn30 

Cu – cubic (FCC), Zn – hexagonal (HCP) 

 
Fig.14  Basic diffraction response 

The small picks are associated to other planes (lattice constant of Cu is a = 0,36146 nm and atom radius R = 

0,128 nm, √2 a = 4R) [8]. Zn crystallize in hexagonal close-packed (HCP) lattice (a = 0,2665 nm, c = 0,4947 nm, 

R = 0,133 nm). In alloys the lattice constant is also changed due to arrangement of individual atoms in the crystal 

lattice. The pole figures were measured for planes (111), (200) and (220).  

 

 
Fig.15 Variations of  angle for various crystal 

diffraction planes in dependence on deformation level  

Fig.16  Deviation of lattice constant S0 in 

dependence on deformation level  

dashed line –declared value [6]]  
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There were the small variations in incident diffraction angle  indicated  (see Fig. 15) in dependence of (sample 

thickness reduction) [9]. This is a result of residual stresses in the material after mechanical deformation [10]. 

Real deviation of lattice constant is seen from Fig.16. The shape of this dependence indicates a complicated 

arrangement process of the material grains at mechanical deformations. The pole figures for crystalline plane 

(111) of all four brass samples are shown in Fig. 17. The pole figure from crystalline planes (200) and (220) for 

these analyses were not used. The pole figures data (Fig.17) show that change of the position and intensity of the 

diffraction response comes with increasing deformation. This is natural [11], because the orderliness of 

crystalline grains increased at deformation, in terms of the orientation of the crystalline planes. 

 
 

 

 

 

 

 
 

Fig.17. Pole figures of mechanically deformed brass (CuZn30) strips for plane (111) 

Some of these results were published in [12]. The orientation distribution function of crystalline planes from pole 

figure can be displayed in orthogonal form. The ODF constructed from pole figures are presented in Fig. 18. 

These curves for all measured angles of samples inclination  show the plane distribution for various rotation 

angle  at = 0 deg. These curves also obtain information about the preferred directions of crystallographic 

planes caused by mechanical deformation. The angle between the plane (111) and the walls of the crystal is= 

54,735 deg. Complementary angle to 90 deg (’ = 35,265 deg) will be one of the tilt incident angles for crystals 

oriented parallel to the sample surface.  

  

 
 

Fig.18 Fragments of orientation distribution functions for 2=0 and for all 4 brass samples 

The initial distribution (S0) on Fig.18 is arranged in range 10 to 45 deg of inclination angle. At increasing of 

deformation level (samples S3, S4 and S6), it is possible to see separation of diffraction intensity peak to  

angles around 35 and 15 deg. This effect is most noticeable on the sample with the greatest deformation level 

(S6). Diffraction response depends on the angle of rotation , where we can see a change of the diffraction 

intensity. Diffraction intensity maxima are identical to the rolling direction of the samples ( = 0 deg). The 

peaks of intensity are smaller in the perpendicular direction (90 and 270 deg). Detailed analysis of changes in 

ODF under the influence of mechanical deformation can be done from graphs shown in Fig.19. On this figure, 

there are visible changes in ODF depending on the angle of rotation   (0, 360) deg. The effect of changes in 
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the texture due to mechanical deformation can be monitored through the evaluation of the diffraction intensity 

peaks shift or also from changes their FWHM.  
 

 
  

 

 
 

 
 

 

 
  

Fig.19 The comparison of orientation distribution functions for various angles 1 at 2=0 deg. The vertical axis represents 

the intensity of diffraction response. 

The cumulative chart shown in Fig. 20 was taken from shift of pattern peaks shown in graphs on Fig. 19. The 

first graph (Fig. 20) shows the response of the diffraction peaks positions depending on the angle of rotation  

and second graph shows the dependence of these peaks on the deformation level () of the sample. The graph on 

the right confirms that the preferred directions are  = 0 deg and  = 180 deg.  
 

 
 

Fig.20 Picks of diffraction intensity in angle of sample tilt () in dependence on rotation angle  (left) and deformation level 

 (right) 
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As an attempt to further evaluation the FWHM method has been done. Waveforms of FWHM derived from 

ODF curves are shown in Fig. 21: the image on the left shows the dependence of FWHM on the angle of rotation 

 for various levels of deformation, and the right graph is the dependence of FWHM on the deformation level. 

As it is shown in that two images the preferred directions are  = 0 and  = 180 deg and the minimum values of 

FWHM are in positions where they are expected. 
 

   
 

 Fig. 21 FWHM of diffraction intensity in dependence on rotation angle  (left) and deformation level (right) 

 

4 Conclusion 

The aim of this study was to show the possibilities of using X-ray diffraction for materials research in 

particular with regard to changes in the texture of the material during mechanical deformation. Article does not 

describe all the possibilities of the methodology, so that more detailed information is to be found in the literature, 

which is enough on this subject (see eg.  [13-15]). 
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