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Abstract 

This technique bootraping has been successfully used in various applied statistical problems, although not many applications 

have been reported in the area of time series. In this paper we present a new application of Bootstrap to time series. A 

fundamental aspect of supply chain management is accurate demand forecasting. We address the problem of forecasting 

intermittent (or irregular) demand, i.e. random demand with a large proportion of zero values. Items of spare parts with sporadic 

consumption can make a significant, up to 60% portion of the value of supplies in service and workshop inventory areas of 

many industrial segments. An understanding of key features of demand data is important when developing computer systems 

for forecasting and inventory control. 
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1 Introduction 

Bootstraping is a method aiming to increase an accuracy value of statistic estimations.  The results are 

dependent only on bootstrapping samples. We do not need to know the basic distribution of a random variable. 

Bootstraping creates a large amount of random choices from input data of a bootstraping sample and it calculates 

improved statistics on each of such choice. In addition to numerical characteristics it provides data for statistical 

characteristics in form of frequency histograms and choices probability histograms.  From a data set being reviewed 

we generate bootstrapping y random choices several thousands times so that we choose with repetition (by a 

substitution of chosen data) from a data set being reviewed x = (x1, x2,.........,xn), a needed amount of m data  y = 

(y1, y2,.........,ym). The chosen numerical values  yi are inter independent and they are chosen for a bootstraping 

sample with the same probability  /uniform distribution/. The samples usually differ from each other and they differ 

from a base data set being reviewed.  As we sample with repetitions, it is possible, that some xi  data appear several 

times in a sample or that we do not choose them ever. In case of a specification of a future demand within a delivery 

term /a delivery leadtime - LT/ we choose from a bootstrapping sample a number of data corresponding with LT[2]. 

 

2 Simulation model of a sporadic demand   . 

The presented simulation model applies stochastic and dynamic principles of inventories modeling.  The simulation 

model was created based on simple algorithms and MATLAB language commands.  It consists of two parts: The 

first part of a model applies the principle of a bootstrapping aiming to define an optimal stock level for an item 

with a following sequence: 

 

•Downloading the array and a bootstrapping sample of demand data. Fig. 1.  

•Computation of numerical characteristics for a bootstrapping sample of a demand for ani term, number of data,  

min, max, mean, std. 

•Specification of simulation input data – number of bootstrapping choices, number of chosen periods for a delivery 

time period, specification of a quantile of a demanded logistic support of a delivery.  

•Generating a matrix of indices for bootstrapping samples of uniform distribution.   

•Transference of indices matrix into a matrix of demand of bootstrapping choices.  

•Sum of values in a row of demand matrix of bootstrapping choices.   

•Graphic and statistical processing of output data for a definition of a size of an optimal stock. 
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Fig 1 Sample of demand data for 50 periods 

 
We simulate choices from a demand sample for 50 time periods. For each choice we randomlychoose a number 

of values corresponding to a lead time. For simplicity LT=2 time periods. Each choice from a sample is represented 

by a row of a matrix, each column represents a delivery time period. Table1 displays a generating of values of 

bootstrapping  indices matrix on 10 choices with a uniform distribution, transformation of the indices matrix into 

a matrix of bootstrapping choices demand and  a sum of values of the rows from a bootstrapping choices demand 

matrix. 

 

Table 1 Generating  10  choices of indices of an item being reviewed and a demand for LT=2 

Choice 

number 

Index 1 Index 2 expenditure1 expenditure2 SUM 

expenditure  

1 26 12 0 4 4 

2 31 46 0 0 0 

3 45 34 0 0 0 

4 7 37 0 0 0 

5 15 35 2 5 7 

6 4 40 2 0 2 

7 8 27 0 1 1 

8 4 38 2 6 8 

9 10 26 2 0 2 

10 39 46 0 0 0 

 

Number of choices – simulations has an impact on a provision of a same probability that an item index will be 

chosen by which we assign a demand in pieces Fig. 2.  A requirement of an uniform distribution does not become 

evident at a smal number of simulations, amount of choices of indices lines up with an increasing number of 

simulations  and it confirms an algorithm rightness of a procedure for a generator of a uniform distribution from a 

choice. 
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Fig 2 Choice of indices of time periods being modelled and a verification of a uniform distribution 

 

We develop a histogram from a sum of values from the rows of a demand matrix made based on  bootstrapping 

choices.  For 100 choices  of the delivery time period 2 periods with a probability 0.95, in the Fig. 3, we see that 

the intervals with a null demand are represented with the greatest frequency. Statistics of the set: min: 0, max: 13, 

mean: 2.63, median: 1, std: 3.25 

 

 
Fig. 3 Histogram of  a sum of choices frequencies 

 

We also use the data to create a cummulative function of a simulated demand and to define an optimal stock. The greater 

variance in defining the amount of an item of an optimal stock becomes evident in a smaller number of choices and in a shorter 

delivery time period.  In the Fig.4. Three simulation experiments with a difference in amount of 8-12 pieces 
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10 
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Fig 4 Cumulative probability of a sum of choices frequency 

 

We can see in the Fig. 5 that each simulation experiment provides a different course of a cumulative 

probability of a sum of choices frequency.  

 

 
Fig. 5 Variances of data and course of an empirical CDF for 5 simulations 

 

 

 

 

3 Conclusion 

For evaluation and prediction of the consumption is used arithmetic, moving or weighted moving average. For 

the trend development of consumption is used exponential equalizing of first and second degree, or linear regression. 

Auto correlation and identification models are also used. Empirical data arrays of sporadic consumption, however, 

contain randomly substituting zero values with non-zero. This may, by use of calculations provide variable results for 

determining the required amount. The bootstrap distribution of a point estimator of a parameter has been used to 

produce a bootstrapped confidence interval for the parameter's true value, if the parameter can be written as a function 
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of the distribution. Parameters are estimated with many point estimators. A Bayesian point estimator and a maximum-

likelihood estimator have good performance when the sample size is infinite, according to asymptotic theory. 
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